- Với \(x=0\) ko thỏa mãn
- Với \(x=-1\Rightarrow y=0\)
- Với \(\left[{}\begin{matrix}x>0\\x< -1\end{matrix}\right.\) \(\Rightarrow x\left(x+1\right)>0\)
Pt \(\Leftrightarrow x^3+x^2+x+1=\left(2y^{333}\right)^3\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow x^3+x^2+x+1>x^3\)
\(x\left(x+1\right)>0\Rightarrow x^3+x^2+x+1=\left(x+1\right)^3-2x\left(x+1\right)< \left(x+1\right)^3\)
\(\Rightarrow x^3< \left(2y^{333}\right)^3< \left(x+1\right)^3\)
\(\Rightarrow\left(2y^{333}\right)^3\) nằm giữa 2 lập phương đúng liên tiếp nên không thể là 1 lập phương đúng \(\Rightarrow\) không tồn tại y nguyên thỏa mãn
Vậy pt đã cho có cặp nghiệm nguyên duy nhất: \(\left(x;y\right)=\left(-1;0\right)\)