\(\frac{7}{15}+0,3-\frac{4}{17}+\frac{8}{15}-\frac{13}{17}\)
= \(\left(\frac{7}{15}+\frac{8}{15}\right)+0,3-\left(\frac{4}{17}+\frac{3}{17}\right)\)
= 1 + 0,3 - 1
= 0,3
\(\frac{7}{15}+0,3-\frac{4}{17}+\frac{8}{15}-\frac{13}{17}\)
= \(\left(\frac{7}{15}+\frac{8}{15}\right)+0,3-\left(\frac{4}{17}+\frac{3}{17}\right)\)
= 1 + 0,3 - 1
= 0,3
Giải pt sau bằng cách đặt ẩn phụ
1, \(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\frac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\frac{5}{4}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+3x^2-13x-15=\frac{8}{y^3}-\frac{8}{y}\\y^2+4=5y^2\left(x^2+2x+2\right)\end{matrix}\right.\)
hệ phương trình
1, \(\left\{{}\begin{matrix}3x=6\\x-3y=2\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}3x+5y=15\\2y=-7\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}7x-2y=1\\3x+y=6\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)+11\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}3\left(x+y\right)+5\left(x-y\right)=12\\-5\left(x+y\right)+2\left(x-y\right)=11\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}2\left(3x-2\right)-4=5\left(3y+2\right)\\4\left(3x-2\right)+7\left(3y+2\right)=-2\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{4}{5}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{5}\end{matrix}\right.\)
8 , \(\left\{{}\begin{matrix}\frac{15}{x}-\frac{7}{y}=9\\\frac{4}{x}+\frac{9}{y}=35\end{matrix}\right.\)
\(\begin{cases} 4xy +8(x^2+y^2)+\frac{5}{(x+y)^2}=13\\2x+\frac{1}{x+y}=1\end{cases}\)
\(\hept{\begin{cases}\frac{x+1}{x-1}+\frac{3y}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{cases}}\)
giải hệ phương trình mình đang cần gấp các bạn trả lời mình sẽ tick giúp nheee
\(\begin{cases} 4xy +4(x^2+y^2)+\frac{3}{(x+y)^2}=7\\2x+\frac{1}{x+y}=1\end{cases}\)
Giải các hệ phương trình
\(\left\{{}\begin{matrix}\frac{1}{x+1}+\frac{1}{y}=\frac{1}{3}\\\frac{1}{\left(x+1\right)^2}-\frac{1}{y^2}=\frac{1}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+m\right)^2-y^2+y\left(x+m\right)=11\\x+2y=7-m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+a\right)^2+2\left(y-a\right)^2-\left(x+a\right)\left(y-a\right)=2\\x+y=2\end{matrix}\right.\)
giải hệ phương trình sau:
\(\left\{{}\begin{matrix}4xy+4\left(x^2+y^2\right)+\frac{3}{\left(x+y\right)^2}=7\\2x+\frac{1}{x+y}=3\end{matrix}\right.\)
Giải các phương trình sau :
1 ) \(\frac{2x+3}{x^2+x+1}\) < 0
2) \(\frac{4}{x}+\frac{3}{x-2}\)< 0
3) \(\frac{5}{x+1}>\frac{1}{x-3}\)
giải hệ phương trình và phương trình sau
1 , x4 - \(\frac{1}{2}\)x3 - x2 - \(\frac{1}{2}\)x + 1 = 0
2, x4 + 3x2 -\(\frac{35}{4}\)x2 -3x + 1 = 0
3, 2x4 + 5x3 + x2 + 5x + 2 = 0
4 , x4 + 5x3 + 12x + 20 + 16 = 0
5, 16x4 - 24x3 + 16x2 - 6x +1 = 0
6, 27x4 - 6x3 - 37x2 + 4x + 12 = 0
7, x4 + ( x - 1 ) ( x2 + 2x + 2 ) = 0
8, ( x- 4 )2 + ( x - 2 ) ( 5x2 - 14x + 13 ) +1 = 0
9 , ( x2 - x ) 2 - 2x ( 3x - 5 ) - 3 = 0