\(\frac{3^{100}+1}{3^{99}+1}\)và \(\frac{3^{99}+1}{3^{98}+1}\)
Hãy so sánh hai phân số trên
So sánh phân số sau bằng cách hợp lý : \(\frac{3^{100}+1}{3^{99}+1};\frac{3^{99}+1}{3^{98}+1}\)
. so sánh các phân số sau 1 cách hợp lý
a) -1891 và 23/-114
b) 3100+1/399+1 và 399+1/398+1
Tính dãy số sau :
\(D=\frac{100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{98}{99}+\frac{99}{100}}\)
\(\frac{99^1}{1}+\frac{99^2}{1}+\frac{99^3}{1}+...+\frac{99^{100}}{1}\)so sánh với 1001 vạn
Cho
\(S=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^{ }3}-\frac{4}{3^{ }4}+...+\frac{99}{3^{ }99}-\frac{100}{3^{ }100}\)
So sánh S và \(\frac{1}{5}\)
so sánh hai số:A=1 và B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{99^2}+\frac{1}{100^2}\)
Tính nhanh :
A = \(\left(\frac{2}{3}+\frac{3}{4}+....+\frac{99}{100}\right)\cdot\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....+\frac{98}{99}\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\cdot\left(\frac{2}{3}+\frac{3}{4}+...+\frac{98}{99}\right)\)
\(E=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)