Giải các phương trình sau:
a) \(\frac{4}{x-1}-\frac{5}{x-2}=-3\)
b) \(3x-\frac{1}{x-2}=\frac{x-1}{2-x}\)
c) \(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
d) \(\frac{2}{x^2-4}-\frac{1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
e) \(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\)
f) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)
g)\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
h) \(\frac{12x+1}{6x-2}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4\left(9x^2-1\right)}\)
i) \(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)
j) \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+2\right)\)
k) \(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)
giải phương trình
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)^{ }\)
\(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{8x^23}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)
giải phương trình(tiếp)
\(\frac{5}{3x+2}=2x-1\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\left(\frac{1}{2}\right)^2}\)
\(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1978}{21}+\frac{x-1980}{19}\)
\(\frac{x-\frac{3x-4}{5}}{15}=\frac{5x-\frac{3-x}{2}}{5}-x+1\)
Bài 2: Giải các phương trình sau:
a) 7 – (2x + 4) = - (x + 4)
b) \(\frac{3x-1}{3}=\frac{2-x}{2}\)
c) \(\frac{2\left(3x+5\right)}{3}-\frac{x}{2}=5-\frac{3\left(x+1\right)}{4}\)
d) x2 – 4x + 4 = 9
e) \(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-8}{x^2-4}\)
giải phương trình
a: \(\frac{1-x}{x+1}\) + 3 = \(\frac{2x+3}{x+1}\)
b: \(\frac{x+5}{x-5}\) - \(\frac{x-5}{x+5}\) = \(\frac{20}{x^2-25}\)
c: \(\frac{1-6x}{x-2}\) + \(\frac{9x+4}{x+2}\) = \(\frac{x\left[3x-2\right]+1}{x^2-4}\)
d: \(\frac{3x+2}{3x-2}\) - \(\frac{6}{2+3x}\) = \(\frac{9x^2}{9x^2-4}\)
giúp với mình đang cần ghấp
1) Giải bài toán bằng cách lập ptrình: ( Nếu các đại lượng có sự biến đổi thì lập bảng 12 ô )
Một miếng đất hcn có chiều dài hơn chiều rộng 6m. Tính kích thước của miếng đất, biết chu vi của nó là 60m.
2) Giải các pt chứa ẩn ở mẫu ( Hãy tìm điều kiện cho ẩn để mẫu thức khác 0)
a) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
b) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
c) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x+3\right)\left(x-3\right)}\)
e) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
f) \(\frac{x}{3x-2}-\frac{4}{4x-3}=\frac{x^2}{\left(3x-2\right)\left(4x-3\right)}\)
g) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
h) \(\frac{2x-1}{x-3}-\frac{1}{x}=\frac{3}{x^2-3x}\)
i) \(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-2}{4-x^2}\)
1. Giair phương trình sau :
a.(2x-1) = x - 3x2
b. \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10}=\frac{x+25}{2x^2-50}\)
Câu2:giải các phương trình sau:
a)5(3x+2) =4x+1
b)\(\frac{4x-5}{x-1}=2+\frac{X}{X-1}\) c)\(2x^3+4x^2+2x=0\)