\(s=\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}\)
3S = \(1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)
=> S = \(\frac{3S-S}{2}=\frac{1-\frac{1}{3^{100}}}{2}\)
\(s=\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}\)
3S = \(1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)
=> S = \(\frac{3S-S}{2}=\frac{1-\frac{1}{3^{100}}}{2}\)
Tính tổng A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}} \)
Tính tổng \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Tính các tổng sau:
a) \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}.\)
b) \(-\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}.\)
c)\(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
Câu 1: Tính tổng \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Tính tổng
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\)
\(B=\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{2015}{2016}\)
\(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
Tính tổng trên
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Tính Tổng
A=1+6+11+16+21+.....+101
B=1.2+2.3+3.4+....+98.99
C=\(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.....+\frac{1}{3^{100}}\)
Tính hợp lý các tổng và tích sau:
1) \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
2) \(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
3) \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{300}}\)