Chọn D.
Phương pháp: Dựa vào hình dáng đồ thị của các hàm số cơ bản đã biết trong SGK giải tích 12.
Cách giải: Thấy đây là đồ thị của hàm số bậc 3 có hệ số bậc cao nhất dương nên phương án D phù hợp.
Chọn D.
Phương pháp: Dựa vào hình dáng đồ thị của các hàm số cơ bản đã biết trong SGK giải tích 12.
Cách giải: Thấy đây là đồ thị của hàm số bậc 3 có hệ số bậc cao nhất dương nên phương án D phù hợp.
Cho hàm số y = f ( x ) = x 3 - 3 x 2 + 2 có đồ thị như hình vẽ bên. Trong bốn đường cong dưới đây, đường nào là đồ thị của hàm số y = x + 1 ?
A.
B.
C.
D.
Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f’(x). Xét hàm số g(x) = f(x2 – 3). Mệnh đề nào dưới đây sai ?
A. Hàm số g(x) đồng biến trên (–1;0)
B. Hàm số g(x) nghịch biến trên (–∞;–1)
C. Hàm số g(x) nghịch biến trên (1;2)
D. Hàm số g(x) đồng biến trên (2;+ ∞)
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ . Đường cong trong hình vẽ bên là đồ thị của hàm số y = f '(x). Xét hàm số g x = f x 2 − 3 . Mệnh đề nào dưới đây sai?
A. Hàm số g(x) đồng biến trên (-1;0)
B. Hàm số g(x) nghịch biến trên − ∞ ; − 1
C. Hàm số g(x) nghịch biến trên (1;2)
D. Hàm số g(x) đồng biến trên 2 ; + ∞
Cho hàm số f x = x 3 + a x + b và g x = f c x 2 + d x với a , b , c , d ∈ R có đồ thị như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số y=f(x). Diện tích hình phẳng giới hạn bởi hai đường cong y=f(x) và y=g(x) gần nhất với kết quả nào dưới đây?
A. 7,66
B. 4,24
C. 3,63
D. 5,14
Cho hàm số y = f(x) có đạo hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f’(x), (y = f’(x) liên tục trên R). Xét hàm số g x = f x 2 - 2 . Mệnh đề nào dưới đây sai?
A. Hàm số g(x) nghịch biến trên (-∞;-3)
B. Hàm số g(x) có 3 điểm cực trị.
C. Hàm số g(x) nghịch biến trên (-1;0)
D. Điểm cực đại của hàm số là 0.
Cho hàm số y = f(x) liên tục và có đạo hàm cấp hai trên R. Đồ thị của các hàm số y = f(x), y = f'(x) và y = f''(x) lần lượt là các đường cong nào trong hình vẽ bên.
A. C 1 , C 3 , C 2
B. C 3 , C 2 , C 1
C. C 3 , C 1 , C 2
D. C 1 , C 2 , C 3
Cho hàm số y=f(x) có đạo hàm trên ℝ. Đường cong trong hình vẽ bên là đồ thị của hàm số y=f’(x), f’(x) liên tục trên ℝ. Xét hàm số g x = f x 2 - 2 . Mệnh đề nào dưới đây sai?
A. Hàm số g(x) nghịch biến trên khoảng (-∞;2)
B. Hàm số g(x) đồng biến trên khoảng (2;+∞)
C. Hàm số g(x) nghịch biến trên khoảng (-1;0)
D. Hàm số g(x) nghịch biến trên khoảng (0;2)
Cho hai hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e với a ≠ 0 và g(x)= p x 2 + q x - 3 c ó đồ thị như hình vẽ bên dưới. Đồ thị hàm số y=f(x) đi qua gốc tọa độ và cắt đồ thị hàm số y=g(x) tại bốn điểm có hoành độ lần lượt là -2;-1;1 và m. Tiếp tuyến của đồ thị hàm số y=f(x)-g(x) tại điểm có hoành độ x=-2 có hệ số góc bằng -15/2. Gọi (H) là hình phẳng giới hạn bởi đồ thị hai hàm số y=f(x) và y=g(x) (phần được tô đậm trong hình vẽ). Diện tích của hình (H) bằng
A. 1553 120
B. 1553 240
C. 1553 60
D. 1553 30
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ và f(1)=1,f(-1)=-1/3 Đặt g x = f 2 x - 4 f x Đồ thị của hàm số y=f‘(x) là đường cong ở hình bên. Mệnh đề nào sau đây đúng?
A. m i n ℝ g x = - 3
B. m a x ℝ g x = - 3
C. m i n ℝ g x = 13 9
D. m a x ℝ g x = 13 9
Cho hai hàm số y=f(x) và y=g(x) là hai hàm số liên tục trên ℝ có đồ thị hàm số y=f’(x) là đường cong nét đậm, đồ thị hàm số y=g’(x) là đường cong nét mảnh như hình vẽ. Gọi ba giao điểm A, B, C của y=f’(x) và y=g’(x) trên hình vẽ lần lượt có hoành độ là a, b, c. Tìm giá trị nhỏ nhất của hàm số h(x)=f(x)-g(x) trên đoạn [a;c]
A. m i n h x a ; c = h 0
B. m i n h x a ; c = h a
C. m i n h x a ; c = h b
D. m i n h x a ; c = h c