Sử dụng kí hiệu \(\forall ,\exists \) để viết các mệnh đề sau:
a) Mọi số thực cộng với số đối của nó đều bằng 0
b) Có một số tự nhiên mà bình phương bằng 9.
Với mỗi mệnh đề chứa biến sau, tìm những giá trị của biến để nhận được một mệnh đề đúng và một mệnh đề sai.
a) \(P(x): "x^2=2"\)
b) \(Q(x): "x^2+1>0"\)
c) \(R(n): "n+2\) chia hết cho 3” (n là số tự nhiên).
Cho các mệnh đề sau:
P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”
Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”
R: “Có số thực x sao cho \({x^2} + 2x - 1 = 0\)”
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Sử dụng kí hiệu \(\forall ,\exists \) để viết lại các mệnh đề đã cho.
Phát biểu mệnh đề phủ định của các mệnh đề sau. Xét tính đúng sai của mỗi mệnh đề và mệnh đề phủ định của nó.
a) Paris là thủ đô của nước Anh
b) 23 là số nguyên tố
c) 2021 chia hết cho 3
d) Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm.
Xét tính đúng sai của các mệnh đề sau:
(1) Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ;
(2) Bình phương của mọi số thực đều không âm;
(3) Có số nguyên cộng với chính nó bằng 0;
(4) Có số tự nhiên n sao cho 2n – 1 = 0.
Xét tính đúng sai của các mệnh đề sau và phát biểu mệnh đề phủ định của chúng.
a) 2020 chia hết cho 3
b) \(\pi < 3,15\)
c) Nước ta hiện nay có 5 thành phố trực thuộc trung ương.
d) Tam giác có hai góc bằng \({45^o}\) là tam giác vuông cân.
Xét câu “n chia hết cho 5” (n là số tự nhiên).
a) Có thể khẳng định câu trên là đúng hay sai không?
b) Tìm hai giá trị của n sao cho câu trên là khẳng định đúng, hai giá trị của n sao cho câu trên là khẳng định sai.
Xét hai mệnh đề dạng \(P \Rightarrow Q\) sau:
“Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)”;
“Nếu \(a = 2\) thì \({a^2} - 4 = 0\)”.
a) Chỉ ra P, Q và xét tính đúng sai của mỗi mệnh đề trên.
b) Với mỗi mệnh đề đã cho, phát biểu mệnh đề \(Q \Rightarrow P\) và xét tính đúng sai của nó.
Xét hai mệnh đề sau:
(1) Nếu ABC là tam giác đều thì nó là tam giác cân
(2) Nếu 2a – 4 > 0 thì a > 2
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Mỗi mệnh đề trên đều có dạng “Nếu P thì Q”. Chỉ ra P và Q ứng với mỗi mệnh đề đó.
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình bình hành”.
Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
a) Phát biểu mệnh đề \(P \Rightarrow Q\) và xét tính đúng sai của nó.
b) Phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\).