Phân tích đa thức :
a, 10x^3y - 25x^4y^2 - 5x^2y^3
b, 2x^2 - 8x +y^2 +2y +9
Cho A = 3^(n+2) - 2^(n+2) -2^n +3^n .a, CM A chia hết cho 10
b,Cho x+y =a ; x^2 +y^2 =b ; x^3 + y^3 = c . CM a^3 - 3ab +3c =0
1/ CM:
a. (x-1).(x2+x+1)=x3-1
b. (x3+x2y+xy2+y3).(x-y)=x4-y4
2/ Cho a và b là 2 STN. Biết a chia hết cho 3 dư 1; b chia hết cho 3 dư 2. CM rằng ab chia cho 3 dư 2.
3/ CM rằng biểu thức n(2n-3) - 2n(n+1) luôn chia hết cô 5 với mọi số nguyên n.
4/ CM rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n.
Rút gọn:
1. n^2(n-1)(n+1) - (n^2+2)(n^2-2)
2. (y+3)(y-3)(y^2+9)- (y^2-4)(y^2+4)
3.(x - 2y+3)(x+2y-3) - (x-2y)(x+2y)
4. (a+b+c)^2
5.(a+b-c)^2
6. (a-b-c)^2
Cho x+y=a+b; x2+y2=a2+b2. CMR:
a) x3+y3=a3+b3
b) xn+yn=an+bn \(\forall\)n\(\in\) N
a) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3
b) Cho x-y=m; x^2+y^2=n. Tính x^3-y^3 theo m và n
Vận dụng hằng đẳng thức 4;5;6;7
Bài 1:Rút gọn biểu thức sau
a) (a+b)^3+(a-b)-2a(a^2+3b^2)
b)(m+n).(m^2-mn+n^2)-(m-n).(m^2+mn+n^2)-2(n+1).(n-1).n
c)(x+y).(x-y).(x^2-xy+y^2).(x^2+xy+y^2)
bài 2 tính giá trị các biểu thức
a)x^2-y^2 tại x=87 và y=13
b)x^3-3x^2+3x-1 tại x=101
c)x^3+9x^2+27x+27 tại x=97
help gấp
1) Làm tính nhân: a) (3-2*x+4*x^2)*(1+x-2*x^2). b) (a^2+a*x+x^2)*(a^2-a*x+x^2)*(a-x). 2) Cho đa thức: A=19*x^2-11*x^3+9-20*x+2*x^4. B=1+x^2-4*x Tìm đa thức Q và R sao cho A=B*Q+R. 3) Dùng hằng đẳng thức để làm phép chia: a) (4*x^4+12*x^2*y^2+9*y^4):(2*x^2+3*y^2). b) ( 64*a^2*b^2-49*m^4*n^2):(8*a*b+7*m^2*n). c) (27*x^3-8*y^6):(3*x-2*y^2)
1 Rút gon các biểu thức sau:
a) (y-3)(y+3) ; b) (m+n)(m^2-mn+n^2) ; c) (2-a)(4+2a+a^2)
d) (a-b-c)^2-(a-b+c)^2 ; e) (a-x-y)^3-(a+x-y)^3
f) (1+x+x^2)(1-x)(1+x)(1-x+x^2)
Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?