Lời giải:
$m=0$ thì hệ có nghiệm duy nhất $(x,y)=(-1,1)$
$m\neq 0$ thì hệ có nghiệm duy nhất khi mà: $\frac{m}{1}\neq \frac{1}{m}$
$\Leftrightarrow m\neq \pm 1$
Tóm lại $m\neq \pm 1$ thì hệ có nghiệm duy nhất
Lời giải:
$m=0$ thì hệ có nghiệm duy nhất $(x,y)=(-1,1)$
$m\neq 0$ thì hệ có nghiệm duy nhất khi mà: $\frac{m}{1}\neq \frac{1}{m}$
$\Leftrightarrow m\neq \pm 1$
Tóm lại $m\neq \pm 1$ thì hệ có nghiệm duy nhất
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)tìm m nguyên sao cho hệ phương trình có nghiệm duy nhất (x;y) mà x;y đều là số nguyên
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) sao cho tích xy nhỏ nhất?
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)(m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y<0
Cho hệ phương trình\(\left\{{}\begin{matrix}x+my=1\\mx+y=1\end{matrix}\right.\)
tìm m để nghiệm có hệ duy nhất thỏa mãn x+2y=5.
Làm rõ bước
Cho hệ phương trình \(\left\{{}\begin{matrix}x+\left(m-1\right)y=2\\\left(m+1\right)x-y=m+1\end{matrix}\right.\)
a, giải hệ với m = 1/2
b, Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn điều kiện x>y
Cho hệ phương trình :
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình theo tham số m.
b) Trong trường hợp hệ phương trình có nghiệm duy nhất (x, y). Tìm các giá trị của m để x + y = -1.
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) sao cho x.y có giá trị nhỏ nhất.
cho hệ phương trình sau \(\left\{{}\begin{matrix}mx-2y=3\\x-my=4\end{matrix}\right.\). tìm m để hệ phương trình trên có nghiệm duy nhất