Với \(x\ge0,\) \(x\ne4,\) ta có:
\(\dfrac{x}{x-4}-\dfrac{\sqrt{x}+3}{x+\sqrt{x}-6}\)
\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+3}{\left(x-2\sqrt{x}\right)+\left(3\sqrt{x}-6\right)}\)
\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)+3\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x-\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(x-2\sqrt{x}\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)