Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kha Diệp

\(\dfrac{x+\sqrt{x}-6}{x-9}+\dfrac{x-7\sqrt{x}+19}{x+\sqrt{x}-12}-\dfrac{x-5\sqrt{x}}{x+4\sqrt{x}}\)với x>0 x≠9

Nguyễn Lê Phước Thịnh
10 tháng 10 2020 lúc 20:19

Ta có: \(\frac{x+\sqrt{x}-6}{x-9}+\frac{x-7\sqrt{x}+19}{x+\sqrt{x}-12}-\frac{x-5\sqrt{x}}{x+4\sqrt{x}}\)

\(=\frac{x+3\sqrt{x}-2\sqrt{x}-6}{x-9}+\frac{x-7\sqrt{x}+19}{x+4\sqrt{x}-3\sqrt{x}-12}-\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\sqrt{x}\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{x-9}+\frac{x-7\sqrt{x}+19}{\sqrt{x}\left(\sqrt{x}+4\right)-3\left(\sqrt{x}+4\right)}-\frac{\sqrt{x}-5}{\sqrt{x}+4}\)

\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{x-7\sqrt{x}+19}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}+\frac{x-7\sqrt{x}+19}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}-\frac{x-8\sqrt{x}+15}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x+2\sqrt{x}-8+x-7\sqrt{x}+19-x+8\sqrt{x}-15}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x+3\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x+4\sqrt{x}-\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-3}\)


Các câu hỏi tương tự
_san Moka
Xem chi tiết
_san Moka
Xem chi tiết
Liên Phạm Thị
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Ngọc Mai
Xem chi tiết
Phương Nguyễn
Xem chi tiết
Nguyễn Bích Hà
Xem chi tiết
hello hello
Xem chi tiết
Nguyễn Phương Hiền
Xem chi tiết