\(\dfrac{60}{x}-\dfrac{60}{x+2}=\dfrac{1}{20}\left(đk:x\ne0,x\ne-2\right)\)
\(\Leftrightarrow\dfrac{60x+120-60x}{x\left(x+2\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{120}{x^2+2x}=\dfrac{1}{20}\Leftrightarrow x^2+2x=2400\)
\(\Leftrightarrow\left(x+1\right)^2=2401\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=49\\x+1=-49\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=48\\x=-50\end{matrix}\right.\)(thỏa đk)
Ta có: \(\dfrac{60}{x}-\dfrac{60}{x+2}=\dfrac{1}{20}\)
\(\Leftrightarrow x\left(x+2\right)=1200x+2400-1200x\)
\(\Leftrightarrow x^2+2x-2400=0\)
\(\Delta=2^2-4\cdot1\cdot\left(-2400\right)=9604\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-2-98}{2}=-50\left(nhận\right)\\x_2=\dfrac{-2+98}{2}=48\left(nhận\right)\end{matrix}\right.\)