`5/2-|x+1/2|=1/3`
`|x+1/2|=5/2-1/3=13/6`
`@TH1:x+1/2=13/6=>x=13/6-1/2=5/3`
`@TH2:x+1/2=-13/6=>x=-13/6-1/2=-8/3`
Vậy `x in {5/3;-8/3}`
=>|x+1/2|=5/2-1/3=15/6-2/6=13/6
=>x+1/2=13/6 hoặc x+1/2=-13/6
=>x=5/3 hoặc x=-8/3
\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{13}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{13}{6}\\x+\dfrac{1}{2}=-\dfrac{13}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{8}{3}\end{matrix}\right.\)
\(\dfrac{5}{2}-\left|x+\dfrac{1}{2}\right|=\dfrac{1}{3}\)
\(\left|x+\dfrac{1}{2}\right|=\dfrac{5}{2}-\dfrac{1}{3}\)
\(\left|x+\dfrac{1}{2}\right|=\dfrac{15}{6}-\dfrac{2}{6}\)
\(\left|x+\dfrac{1}{2}\right|=\dfrac{13}{6}\)
\(\Rightarrow x+\dfrac{1}{2}=\pm\dfrac{13}{6}\)
\(TH1:x+\dfrac{1}{2}=\dfrac{13}{6}\)
\(x=\dfrac{13}{6}-\dfrac{1}{2}=\dfrac{13}{6}-\dfrac{3}{6}=\dfrac{10}{6}=\dfrac{5}{3}\)
\(TH2:x+\dfrac{1}{2}=-\dfrac{13}{6}\)
\(x=-\dfrac{13}{6}-\dfrac{1}{2}=-\dfrac{13}{6}-\dfrac{3}{6}=-\dfrac{16}{6}=-\dfrac{8}{3}\)
Vậy \(x\in\left\{\dfrac{5}{3};-\dfrac{8}{3}\right\}\)