Ta có: \(\dfrac{1-x^2}{x\left(x-1\right)}\)
\(=\dfrac{-\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}\)
\(=\dfrac{-x-1}{x}\)
Ta có: \(\dfrac{1-x^2}{x\left(x-1\right)}\)
\(=\dfrac{-\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}\)
\(=\dfrac{-x-1}{x}\)
Tính
a)\(\left(\dfrac{\left(x-1\right)^2}{\left(3x+x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{x^2+x}{x^2+1}\)
b)\(\left(\dfrac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\dfrac{2x^2-x+10}{2\left(x^3+x^2+x+1\right)}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{2\left(x-1\right)}\right).\dfrac{2}{x-1}\)
c)\(\left(\dfrac{x^2}{x^2-5x+6}+\dfrac{x^2}{x^2-3x+2}\right):\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
chứng minh rằng :
a) \(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)=\dfrac{x+1}{2x}\)
b)\(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x+1}{x}=\dfrac{2x}{x-1}\)
c)\(\left[\dfrac{2}{\left(x+1\right)^3}\left(\dfrac{1}{x}+1\right)+\dfrac{1}{x^2+2x+1}\left(\dfrac{1}{x^2}+1\right)\right]:\dfrac{x-1}{x^3}=\dfrac{x}{x-1}\)
Giải phương trình:
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)=\left(x+4\right)^2\)
Giải pt sau: \(10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x-5\right)^2-5\)
Làm tính nhanh (làm kĩ giúp ạ)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}\)
a) \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
c) \(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
Tìm các số A, B, C để có:
a) \(\dfrac{x^2-x+2}{\left(x-1\right)^3}=\dfrac{A}{\left(x-1\right)^3}+\dfrac{B}{\left(x-1\right)^2}+\dfrac{C}{x-1}\)
b) \(\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{A}{x-1}+\dfrac{Bx+C}{x^2+1}\)
\(\left(x^2+\dfrac{1}{3}x+\dfrac{1}{9}\right)\left(x-\dfrac{1}{3}\right)-\left(x-\dfrac{1}{3}\right)^2\)
Thực hiện phép tính:
a, \(\dfrac{2}{3x+9}\) - \(\dfrac{x-3}{3x^{2^{ }}+9x}\)
b, \(\dfrac{x^2+x}{5x^{2^{ }}-10x+5}\) : \(\dfrac{3x+3}{5x-5}\)
c, \(\dfrac{1}{x\left(x+1\right)}\) + \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}\) + \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}\) + ... + \(\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)
giải phương trình
a.\(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
b.\(x\left(2x-9\right)=3x\left(x-5\right)\)
c.\(3x-15=2x\left(x-5\right)\)
d.\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
e.\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)