\(=\dfrac{-2}{3}+\dfrac{2^{40}\cdot3^{39}}{2^{39}\cdot3^{30}}=\dfrac{-2}{3}+2\cdot3^9=\dfrac{-2+2\cdot3^{10}}{3}\)
\(=\dfrac{-2}{3}+\dfrac{2^{40}\cdot3^{39}}{2^{39}\cdot3^{30}}=\dfrac{-2}{3}+2\cdot3^9=\dfrac{-2+2\cdot3^{10}}{3}\)
Bài 1: Tính một cách hợp lí
d) (\(^{2^2}\) : \(\dfrac{4}{3}\) - \(^{\dfrac{1}{2}}\) ) x \(\dfrac{6}{5}\) - 17
h) \(\dfrac{\left(-1\right)^3}{15}\) + \(\left(-\dfrac{2}{3}\right)^2\) : \(2\dfrac{2}{3}\) - \(\left|-\dfrac{5}{6}\right|\)
k) \(\dfrac{2.6^9-2^5.18^4}{2^2.6^8}\)
n) 3 - \(\left(-\dfrac{7}{8}\right)^0\) + \(\left(\dfrac{1}{2}\right)^3\) . 16
Mg giải gấp giúp mình ạ
\(\dfrac{2}{5}\)x = (\(\dfrac{1}{2}\))\(^3\) : \(\dfrac{1}{2}\)
:'>?
b. \(\dfrac{8^2.6^3}{9^2.16^2}\)
c. \(\dfrac{\left(0,15\right)^4}{\left(0,5\right)^5}\)
d. \(\left(\dfrac{3}{4}\right)^3\). \(\left(\dfrac{16}{9}\right)^3\)
Thực hiện phép tính
\(\dfrac{27^3.11+9^5.5}{3^9.2^4}\)
\(\dfrac{5^8+2^2.25^4+2^3.125^3-15^4.5^4}{4^2.625^2}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
Giúp mik
a \(\dfrac{-4}{7}\) - \(\dfrac{5}{13}\) x \(\dfrac{-39}{25}\) + \(\dfrac{-1}{42}\) : \(\dfrac{-5}{6}\)
b \(\dfrac{2}{9}\) x [\(\dfrac{4}{45}\): ( \(\dfrac{1}{5}\) - \(\dfrac{2}{15}\)) + 1\(\dfrac{2}{3}\)] - \(\dfrac{-5}{27}\)
1 so sánh \(\dfrac{1}{2^{300}}\) và \(\dfrac{1}{300^{200}}\)
\(\dfrac{1}{5^{199}}\) và\(\dfrac{1}{3^{300}}\)
2 so sánh
5\(^{20}\)và 3\(^{34}\)
(-5)\(^{39}\)và -2\(^{91}\)
Tính
\(\dfrac{6^3+2.6^2+2^3}{37}\)
Giải chi tiết dùm mik nha. Thankss
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
6. Tính
\(A=\dfrac{4}{1.4}+\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{31.34}\)
\(B=1-5+5^2-5^3+5^4-...-5^{39}\)
Tính:
a) \(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
b) T=\(\dfrac{5^{16}.27^7}{125^5.9^{11}}\)