Bài 1: Tính đơn diệu và cực trị của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Đạo hàm f'(x) của hàm số y = f(x) có đồ thị như Hình 12. Xét tính đơn điệu và tìm điểm cực trị của hàm số y = f(x).

datcoder
28 tháng 10 lúc 6:56

f’(x) > 0 trên các khoảng (-1;2) và (4;5) nên f’(x) đồng biến trên các khoảng (-1;2) và (4;5).

f’(x) < 0 trên các khoảng (-2;-1) và (2;4) nên f’(x) nghịch biến trên các khoảng (-2;-1) và (2;4).

Ta có:

\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 2\\x = 4\end{array} \right.\)

Vậy f(x) đạt cực tiểu tại x = -1 và x = 4 do f’(x) đổi dấu từ âm sang dương khi đi qua x = -1 và x = 4, đạt cực đại tại x = 2 do f’(x) đổi dấu từ dương sang âm khi đi qua x = 2.