(\(x^3\) + \(x^2\) - 12) : (\(x\) - 2)
= [(\(x^3-8)\) + (\(x^2\) - 4)] :(\(x-2\))
= [(\(x-2\))(\(x^2+2x+4)\) + \(\left(x-2\right)\left(x+2\right)\)] :(\(x-2\))
= (\(x-2\))(\(x^2+2x+4\) + \(x+2\)):(\(x-2\)
= (\(x-2):\left(x-2\right)\).[\(x^2\) + (2\(x\) + \(x\)) + (4 + 2)]
= 1.[\(x^2\) + 3\(x\) + 6]
= \(x^2+3x+6\)
(8x3+1):(2x+1)=((2x)3+1):(2x+1)=(2x+1)(4x2−2x+1):(2x+1)=4x2−2x+1
x2 + 3x + 6
Câu c:
(\(x^3+x^2+2x+2)\) : (\(x^2+2)\)
= [(\(x^3+2x)+\left(x^2+2\right)\)] : (\(x^2+2\))
= [\(x\).(\(x^2\) + 2) + (\(x^2+2\))] : (\(x^2\) + 2)
= [(\(x^2\) + 2).(\(x+1\))] : (\(x^2\) + 2)
= (\(x^2+2):\left(x^2+2\right)\).(\(x+1\))
= 1.(\(x+1\))
= \(x+1\)