Chứng minh rằng a,\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}< 24\)
b,\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
So sánh: A= \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\) và B= 24
Chứng minh rằng:
a)\(\sqrt{1}+\sqrt{2}+...+\sqrt{8}< 24\)
b)\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>10\)
c)\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{56}< 30\)
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 12\)
So Sánh \(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)
và B=24
Chứng minh rằng :
\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{56}< 30\)
CMR: \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 12\)
Chứng tỏ:
\(_{\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 12}\)
SO SÁNH:
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}\) VÀ 12