Bài 6: Ôn tập chương Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Nguyệt

Có bao nhiêu giá trị nguyên m ∈ (-10; 10) để hàm số y = m2x4 - 2(4m - 1)x2 + 1 đồng biến trên khoảng (1; +\(\infty\) )

Nguyễn Việt Lâm
18 tháng 1 2021 lúc 14:54

- Với \(m=0\) thỏa mãn

- Với \(-2\left(4m-1\right)\ge0\Rightarrow m\le\dfrac{1}{4}\) hàm đồng biến trên \(\left(0;+\infty\right)\) thỏa mãn

- Xét với \(m>\dfrac{1}{4}\)

\(y'=4m^2x^3-4x\left(4m-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\sqrt{4m-1}}{m}\\x=-\dfrac{\sqrt{4m-1}}{m}\end{matrix}\right.\)

Do \(a=m^2>0\) nên hàm đồng biến trên các khoảng \(\left(-\dfrac{\sqrt{4m-1}}{m};0\right)\) và \(\left(\dfrac{\sqrt{4m-1}}{m};+\infty\right)\)

\(\Rightarrow\) Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(\dfrac{\sqrt{4m-1}}{m}\ge1\Rightarrow4m-1\ge m^2\)

\(\Leftrightarrow m^2-4m+1\le0\Rightarrow2-\sqrt{3}\le m\le2+\sqrt{3}\)

Vậy \(\left[{}\begin{matrix}m\le\dfrac{1}{4}\\2-\sqrt{3}\le m\le2+\sqrt{3}\end{matrix}\right.\)

Minh Nguyệt
18 tháng 1 2021 lúc 22:39

undefined


Các câu hỏi tương tự
Minh Nguyệt
Xem chi tiết
Trần T.Anh
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Trần Thanh
Xem chi tiết
Trần Thanh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết