Có bao nhiêu cặp số nguyên dương (a;b) với \(a,b\in\left(0;10\right)\)để hàm số \(y=\frac{bx+a^2-2a-3}{x+4}\)nghịch biến trên mỗi khoảng xác định?
Cho a, b là hai số nguyên dương sao cho cả hai hàm số y=ax+b4x+ay=ax+b4x+avà y=bx+a4x+by=bx+a4x+b đồng biến trên từng khoảng xác định. Giá trị nhỏ nhất của biểu thức S=a+b ?
Cho các số nguyên dương a,b. Biết hàm số y = \(\frac{1}{3}\left(\text{a}-4\right)x^3\) +2\(bx^2\) + x+5 đồng biến trên khoảng (−∞;+∞). Hỏi giá trị nhỏ nhất của biểu thức S = 2a+3b là ?
Câu 4. Cho hàm số \(y = x^4 - 2x^2 -3\). Mệnh đề nào sau đây là mệnh đề đúng?
A. Hàm số nghịch biến trên \((-1; 0).\)
B. Hàm số đồng biến trên \((-\infty;0).\)
C. Hàm số nghịch biến trên \((-1; 1).\)
D. Hàm số nghịch biến trên \((0; +\infty).\)
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thoả mãn f'(x) = (1 - x)(x+2)g(x) + 2023 với g(x) < 0, ∀x∈R. Hàm số y = f(1-x) + 2023x + 2024 nghịch biến trên khoảng nào?
Cho hàm số: \(y=-\dfrac{x^3}{3}+\left(a-1\right)x^2+\left(a+3\right)x-4\). Tìm a để hàm số đồng biến trên khoảng (0;3)
Hỏi có tất cả bao nhiêu cặp số nguyên dương a,b để hàm số y = (4−a)\(x^3\) +b\(x^2\) + x−1 đồng biến trên khoảng (−∞;+∞)?
1) Tìm m để hàm số y=\(\frac{mx-3}{x+m+4}\) nghịch biến trong khoảng xác định?
2)Xác định m để hàm số y=\(\frac{2x^2+\left(m+1\right)x+2m-1}{x+1}\) tăng trên mỗi khoảng xác định?
3) Tìm GTLN,GTNN của
a) y=\(\frac{cos2x}{cosx-sinx}\) trên [\(\frac{\pi}{3}\);\(\frac{\pi}{2}\)]
b) y=sin3x +cos3x trên [0;2π]
Cho a, b là hai số nguyên dương sao cho cả hai hàm số \(y=\frac{ax+b}{4x+a}\)và \(y=\frac{bx+a}{4x+b}\) đồng biến trên từng khoảng xác định. Giá trị nhỏ nhất của biểu thức S=a+b ?