chứng tỏ rằng
\(\left(7^n+1\right)\left(7^n+2\right)\)chia hết cho 3 với mọi số tự nhiên n
b) chứng tỏ rằng ko tồn tại các số tự nhiên x,y,z sao cho :
(x+y)(y+z)(z+x) + 2016 = \(2017^{2018}\)
\(A=\frac{\left(n+1\right)\left(n+2\right)...2n}{2^n}\)
CMR: A là số tự nhiên với mọi n thuộc N.
Với mọi số tự nhiên \(n>1\) giải thích tại sao \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)
CMR với mọi n là số tự nhiên
số A=\(\frac{2^n+\left(-1\right)^{n+1}}{3}\) là số tự nhiên
CMR: Với mọi số tự nhiên n, phân số \(\frac{12n+1}{2n\left(n+2\right)}\) là phân số tối giản
cho f(x)=(x2+x+1)2+1 với mọi x thuộc N.
a)tìm x để f(x) là số tự nhiên
b)thu gọn:
Pn=\(\frac{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}{f\left(2\right).f\left(4\right).....f\left(2n\right)}\) với n thuộc N*
Với n là số tự nhiên khác 0; Chứng minh \(\dfrac{1\cdot3\cdot5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(n+n\right)}=\dfrac{1}{2^n}\)
Help me please!
Chứng tỏ rằng : \(\left(2^n+1\right)\left(2^n+2\right)\)chia hết cho 3 với mọi n là số tự nhiên
Bài 6. Chứng minh rằng với mọi số tự nhiên \(n\) ta có:
a) \(\left(\right. 3 n + 2019 \left.\right) \left(\right. 7 n + 2020 \left.\right)\) chia hết cho 2;
b) \(n \left(\right. n + 2 \left.\right) \left(\right. n + 7 \left.\right)\) chia hết cho 3;
c) \(n \left(\right. 3 n + 1 \left.\right) \left(\right. 5 n + 2 \left.\right) \left(\right. 7 n + 3 \left.\right)\) chia hết cho 4.