\(11+11^2+11^3+11^4+11^5+11^6+11^7+11^8\)
\(=11\left(1+11\right)+11^3\left(1+11\right)+11^5\left(1+11\right)+11^7\left(1+11\right)\)
\(=\left(11+11^3+11^5+11^7\right).12⋮12\)
Vậy ...
Đặt A=\(11+11^2+11^3+....+11^7+11^8\)
\(\Leftrightarrow A=\left(11+11^2\right)+\left(11^3+11^4\right)+...+\left(11^7+11^8\right)\)
\(\Leftrightarrow A=11\left(1+11\right)+11^3\left(1+11\right)+....+11^7\left(1+11\right)\)
\(\Leftrightarrow A=11\cdot12+11^3\cdot12+...+11^7\cdot12\)
\(\Leftrightarrow A=12\left(11+11^3+....+11^7\right)\)
=> A chia hết cho 12 (đpcm)
ta có \(\left(11+11^2+11^3+...+11^7+11^8\right)=\left(11+11^2\right)+\left(11^3+11^4\right)+...+\left(11^7+11^8\right)\)
=\(11\left(1+11\right)+11^3\left(1+11\right)+...+11^7\left(1+11\right)\)
= \(12\left(11+11^3+..+11^7\right)\)\
=> \(\left(11+11^2+...+11^8\right)⋮12\)
gọi M= như trên
=> M=\(11\left(1+11\right)+11^3\left(1+11\right)+...+11^7\left(1+11\right)\)
=> \(M=12\left(11+11^3+...+11^7\right)⋮12\)(dpcm)
Đặt \(A=11+11^2+11^3+...+11^7+11^8\)
Ta có: \(A=11+11^2+11^3+...+11^7+11^8\)
\(\Rightarrow A=\left(11+11^2\right)+\left(11^3+11^4\right)+...+\left(11^7+11^8\right)\)
\(\Rightarrow A=132+11^2\left(11+11^2\right)+...+11^6\left(11+11^2\right)\)
\(\Rightarrow A=132\left(1+11^2+...+11^6\right)\)
Vì \(132⋮12\Rightarrow132\left(1+11^2+...+11^6\right)⋮12\)
\(\Rightarrow11+11^2+11^3+...+11^8⋮12\)
\(\Rightarrow A⋮12\)
\(\Rightarrowđpcm\)
Có 11 + 112 + 113 +...+ 117 + 118
=(11+112)+(113+114)+....+(117+118)
= 132+112(11+112)+....+116(11+112)
= 1.132+112.132+....+116 . 132
=132.(1+112+....+116)
Vì 132 chia hết cho 12 nên....
Bn tự làm phần cuối nha
Ta có:11+112+113+...+117+118
=(11+112)+(113+114)+...+(117+118)
=11(1+11)+112(1+11)+...+116(1+11)
=12(11+112+...+116) chia hết cho 12
11 + 11² + 11³ +...+ 117 + 118 \(⋮\)12
Ta có : ( 11 + 112) + (113 + 114 ) + .....+ (117 + 118)
= ( 11 + 112) + 113. ( 11 + 112) + ........ + 117 + ( 11 + 112)
= 132 + 113 . 132 + ..... + 117 + 132
= 132 . ( 113 + ...... + 117 ) \(⋮\)12 \(\rightarrowĐPCM\)
# HOK TỐT #
A= 11+11^+2+11^3+11^4+ .......+11^7+11^8
=(11+11^2)+(11^3+11^4)+..........+(11^17+11^18)
do (11+11^2)\(⋮\)12, (11^3+11^4)\(⋮\)12 ,......,(11^17+11^8)\(⋮\)12
=>Achia het cho 12