Ta có a2 + b2 + c2 \(\ge a\left(b+c\right)\)
<=> 2a2 + 2b2 + 2c2 \(\ge\)2a(b + c)
<=> 2a2 + 2b2 + 2c2 \(\ge\)2ab + 2ac
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac \(\ge\)0
<=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + b2 + c2 \(\ge0\)
<=> (a - b)2 + (a - c)2 + b2 + c2 \(\ge0\)(đúng)
Dấu "=" xảy ra <=> a = b = c = 0
=> BĐT được chứng minh