Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Tài Bảo Châu

Chuyên Hải Dương 2010:

Cho trước \(a,b\in R\); gọi x,y là 2   số thực dương thỏa mãn \(\hept{\begin{cases}x+y=a+b\\x^3+y^3=a^3+b^3\end{cases}}\)

Chứng minh rằng :\(x^{2011}+y^{2011}=a^{2011}+b^{2011}\)

 

Ta có  \(\hept{\begin{cases}x+y=a+b\\x^3+y^3=a^3+b^3\end{cases}\left(1\right)}\)

\(\left(1\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\\left(x+y\right)^3-3xy\left(x+y\right)=\left(a+b\right)^3-3ab\left(a+b\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy\left(a+b\right)=ab\left(a+b\right)\end{cases}\left(2\right)}\)

Nếu \(a+b\ne0\)thì \(\left(2\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy=ab\end{cases}}\)

=> x,y là 2 nghiệm của phương trình \(X^2-\left(a+b\right)X+ab=0\)

Giải ra ta có \(\hept{\begin{cases}x=b\\y=a\end{cases};\hept{\begin{cases}x=a\\y=b\end{cases}}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(3)

Nếu \(a+b=0\Rightarrow a=-b\)

Ta có hệ phương trình \(\hept{\begin{cases}x+y=0\\x^3+y^3=0\end{cases}\Rightarrow x=-y}\)

\(\Rightarrow\hept{\begin{cases}x^{2011}+y^{2011}=0\\a^{2011}+y^{2011}=0\end{cases}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(4)

Từ (3) và (4) => đpcm


Các câu hỏi tương tự
Lê Tài Bảo Châu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Thanh Tùng DZ
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Ngọc Phạm Cherry
Xem chi tiết
Phạm Tất Thắng
Xem chi tiết
ღHàn Thiên Băng ღ
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Trang
Xem chi tiết