Chứng tỏ:
1/1*2*3+1/2*3*4+1/3*4*5+....+1/98*99*100=4949/19800
Chứng tỏ rằng \(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{10^2}< \dfrac{1}{2}\)
Chứng tỏ rằng 1/2+1/3+1/4+...+1/100 > 9/5
chứng tỏ rằng 1/3^2+1/4^2+1/5^2+.........+1/2017^2 \(< \frac{1}{2}\)
A=1/1*2+1/3*4+...+1/99*100. Chứng tỏ rằng 7/12<A<5/6
rút gọn p/s sau:
(3/4 - 3/16 - 3/64 - 3/256) / (1 - 1/4 - 1/16 - 1/64)
cho A=1 - 1/2 + 1/3 - 1/4 +1/5 - 1/6 +..............+1/49 -1/50
Chứng tỏ 7/12<A<5/6
tính
( 1/3 - 1/7 - 1/13 ) / ( 2/3 - 2/7 - 2/13 ) x ( 3/4 - 3/16 - 3/64 - 3/256 ) / ( 1- 1/4 - 1/16 - 1/64 ) + 5/8
1) Cho B= (1/2)^2+(1/2)^3+(1/2)^4+...+(1/2)^98+(1/2)^99. Chứng tỏ B<1
2) Rút gọn:
A= 1+5+5^2+5^3+...+5^49+5^50
'' giúp mik bài này vs nhak''