Đặt:
\(A=\left(2^{10}+2^{11}+2^{12}\right)\)
\(A=\left(2^{10}+2^{10}.2+2^{10}.2^2\right)\)
\(A=2^{10}\left(2+2^2+1\right)\)
\(A=2^{10}.7\)
\(\Leftrightarrow A⋮7\)
\(2^{10}+2^{11}+2^{12}=2^{10}\left(1+2+2^2\right)=2^{10}.7⋮7\)
\(\Rightarrowđpcm\)
Ta có: 210+211+212=210+210.2+210.22=210.(1+2+22)=210.7\(⋮\)7
=>210+211+212\(⋮\)7(ĐPCM)
Ta có:
\(2^{10}+2^{11}+2^{12}=2^{10}.1+2^{10}.2+2^{10}.2^2=2^{10}.\left(1+2+2^2\right)=2^{10}.7\) chia hết cho 7
=>\(2^{10}+2^{11}+2^{12}\) chia hết cho 7