Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hoàng nhật minh

Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản

Mây
28 tháng 2 2016 lúc 10:44

Gọi ƯCLN (2n+1 ; 3n+2) = d

=> 2n + 1 chia hết cho d => 3 (2n + 1) chia hết cho d

     3n + 2 chia hết cho d => 2 (3n + 2) chia hết cho d

=> 2 (3n + 2) - 3 (2n + 1) chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> \(\frac{2n+1}{3n+2}\) là phân số tối giản

Ý
28 tháng 2 2016 lúc 10:43

Đặt d là ƯCLN(2n+1;3n+2)

Ta có: 2n+1 chia hết cho d =>  6n+3 chia hết cho d

3n+2 chia hết cho d =>  6n+4 chia hết cho d

=> (6n+4)-(6n+3)= 1 chia hết cho d

=> d thuộc Ư(1)={-1;1}

Vậy 2n+1/3n+2 là phân số tối giản                        ĐPCM

Đợi anh khô nước mắt
1 tháng 3 2016 lúc 12:43

Gọi ƯCLN (2n+1 ; 3n+2) = d

=> 2n + 1 chia hết cho d => 3 (2n + 1) chia hết cho d

     3n + 2 chia hết cho d => 2 (3n + 2) chia hết cho d

=> 2 (3n + 2) - 3 (2n + 1) chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> p/s đó tồi giản


Các câu hỏi tương tự
Lê Thị Nhung Nguyệt
Xem chi tiết
Nguyễn Thị Tố Quyên
Xem chi tiết
Nicky Grimmie
Xem chi tiết
Đỗ Thảo Vii
Xem chi tiết
My love Third Kamikaze
Xem chi tiết
Nam Dốt Toán
Xem chi tiết
Xem chi tiết
Lê Hà Phương Uyên
Xem chi tiết
HỒ THỊ TÚ TRINH
Xem chi tiết
Nguyễn Huy Hoàng
Xem chi tiết