\(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\)
Vì \(\left(3x-1\right)^2\ge0\)
\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)
hay \(9x^2-6x+1>0\)
Ta có :
\(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\)
Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)
Vậy \(9x^2-6x+3>0\forall x\in R\)