a) chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4) (n+5) chia hết cho 2
b) chứng minh n+2012 và n+2013 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n.
a. Tìm tất cả các số tự nhiên n để: 3n + 9.n + 36 là số nguyên tố.
b. Tìm chữ số tận cùng của M= 41 + 42 + 43 + 44 + .........+ 42012 + 42013
c. Chứng tỏ rằng 102015 + 17 chia hết cho 9.
d. Cho hai số a; b nguyên tố cùng nhau. Chứng tỏ rằng: a+ b và a.b của chúng cũng là hai số nguyên tố cùng nhau.
e. Cho S=1 + 3 + 32 + 33 + ... + 399. Chứng tỏ 2S là lũy thừa của 3.
Chứng tỏ rằng hai số n + 1 và 3n + 4 n ∈ N là hai số nguyên tố cùng nhau
Chứng tỏ rằng hai số n+1 và 3n+4(n ∈ N) là hai số nguyên tố cùng nhau
Chứng tỏ rằng 4mn+3 và n là hai số nguyên tố cùng nhau, biết n là số nguyên tố lớn hơn 3
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
chứng tỏ rằng hai số n+1 và 3n+2(n thuộc N)là hai số nguyên tố cùng nhau
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n thuộc N) là hai số nguyên tố cùng nhau.
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n thuộc N) là hai số nguyên tố cùng nhau.