\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
1.
a, chứng tỏ
1/2^2+1/3^2+...+1/2017^2<1
b,1/4+1/16+1/36+1/64+1/100+1/144+...+1/10000<1/2
c,cho A=1/2^2+1/3^2...+1/9^2
chứng tỏ:2/5<a<8/9
d,chứng tỏ:A=1+1/2^2+...+1/100^2<1/3/4
e,chứng tỏ:1/2^2+1/3^2+...+1/100^2<1
chứng tỏ 1/3^2 +1/4^2 +1/5^2+...+1/100^2 <1/2
Chứng tỏ rằng:1/3^2+1/4^2+1/5^2+...+1/100^2<1/2
Chứng tỏ 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + ... + 1/100^2 bé hơn 1/2
Chứng tỏ rằng: 1/2*3+1/3*4+1/4*5+....+1/99*100<1/2
bài 7 chứng tỏ rằng 2/5 < 1/2²+1/3²+1/4²+...+1/100²<1
Cho A = 1/2^2 + 1/3^2 + 1/4^2 + ........ + 1/100^2
Chứng tỏ rằng 3/5 < A < 3/4
Chứng tỏ: A =1/3 mũ 2+ 1/4 mũ 2+ 1/5 mũ 2+... +1/100 <1/2
Chưng tỏ
a, S= 1/2^2+1/3^2+...+1/9^2
Chứng tỏ 2/5<S<8/9
b, 1/2-1/4+1/8-1/16+1/32-1/64<1/3
c, 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16