Chứng minh (102015+8) chia hết cho 18
Đặt A = (102015+8)
A= 1000...0+8 (2015 chữ số 0)
A= 1000...08 (2014 chữ số 0)
Mà A có tổng các chữ số: 1+0+0+...+0+8 (2014 chữ số 0)
Tống các chữ số của A là 9 ⇒ A chia hết cho 9 (1)
Và A có số tận cùng là 8 (số chẵn)
⇒ A chia hết cho 2 (2)
Từ (1)&(2) ta suy ra
(102015+8) chia hết cho 18
Chứng minh (102015+8) chia hết cho 18
Đặt A = (102015+8)
A= 1000...0+8 (2015 chữ số 0)
A= 1000...08 (2014 chữ số 0)
Mà A có tổng các chữ số: 1+0+0+...+0+8 (2014 chữ số 0)
Tống các chữ số của A là 9 ⇒ A chia hết cho 9 (1)
Và A có số tận cùng là 8 (số chẵn)
⇒ A chia hết cho 2 (2)
nguồn hỏi đáp 247
Từ (1)&(2) ta suy ra
(102015+8) chia hết cho 18
Chứng minh (10^2015+8) chia hết cho 18
Đặt A = (10^2015+8)
A= 1000...0+8 (2015 chữ số 0)
A= 1000...08 (2014 chữ số 0)
Mà A có tổng các chữ số: 1+0+0+...+0+8 (2014 chữ số 0)
Tống các chữ số của A là 9 ⇒ A chia hết cho 9 (1)
Và A có số tận cùng là 8 (số chẵn)
⇒ A chia hết cho 2 (2)
Từ (1)&(2) ta suy ra
(10^2015+8) chia hết cho 18