Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
Tổng bình phương của 5 số tự nhiên liên tiếp có dạng là:
A=\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+\left(a+4\right)^2\)
=\(a^2+a^2+2a+1+a^2+4a+4+a^2+6a+9+a^2+8a+16\)
=\(5a^2+20a+30\)
=\(5\left(a^2+4a+6\right)\)
=\(5\left[\left(a+2\right)^2+2\right]\)
Có ((a+2)^2 là 1 số chính phương
suy ra (a+2)^2 không có tận cùng là 3 và 8
suy ra (a+2)^2 không tận cùng bằng 0 hoặc 5
suy ra (a+2)^2+2 không chia hết cho 5
suy ra A không chia hết cho 25
Dễ thấy A chia hết cho 5 nhưng không chia hết cho 25
suy ra a không phải là số chính phương