Gỉa sử (n+1).(n+2)....(n+n) chia hết cho \(2^{n+1}\) => (n+1).(n+2)...(n+n) - \(2^n=2^{n+1}-2^n=2^n\) mà \(2^n\) chia hết cho \(2^n\) => (n+1).(n+2)....(n+n)
chia hết cho \(2^n\)( mâu thuẫn) => đpcm
Gỉa sử (n+1).(n+2)....(n+n) chia hết cho \(2^{n+1}\) => (n+1).(n+2)...(n+n) - \(2^n=2^{n+1}-2^n=2^n\) mà \(2^n\) chia hết cho \(2^n\) => (n+1).(n+2)....(n+n)
chia hết cho \(2^n\)( mâu thuẫn) => đpcm
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
Chứng minh:
a,A=(n-1).(n+1)-n^2+3n-5 chia hết cho 3
b,A=(2n-1).(n+1)-n(2n-3n)+21 chia hết cho 5
cho n là số tự nhiên chứng minh rằng
a:6^2n+19^n-2^n+1 chia hết cho 17
b 6^2n+1 + 5^n+2 chia hết cho 31
c: 9^2n+39 chia hết cho 40
a) Cho n không chia hết cho 3. Chứng minh n^2:3 dư 1
b) Cho n không chia hết cho 5. Chứng minh n^4 : 5 dư 1
c) Cho n không chia hết cho 7. Chứng minh n^6 :7 dư 1
Bài 3: Chứng minh với mọi n thuộc Z
a) (n-1).(n+1)-(n-7).(n-5) chia hết cho 12
b) n.(2n-3)-2n.(n+2) chia hết cho 5
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
Chứng minh rằng:
a) (2n+3)2-9 chia hết cho 4 (n€Z)
b) n2(n+1)+2n2+2n chia hết cho 6 (n€Z)
Chứng minh:
a: n^4+3n^3-n^2-3n chia hết cho 6
b: (2n-1)^3-2n+1 chia hết cho 24
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT