Đặt A=\(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}\)
⇒A\(^2\)=\(\left(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}\right)^2\)
=\(\sqrt{2}+1+\sqrt{2}-1-2.\sqrt{\sqrt{2}+1}.\sqrt{\sqrt{2}-1}\)
=2.\(\sqrt{2}-\)\(2.\sqrt{2-1}\)
=\(2.\left(\sqrt{2}-1\right)\)
⇒A=\(\sqrt{2\sqrt{2-1}}\)
Vậy \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)