Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vu Phuong Thuy

Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 2016 không chia hết cho 5

Phan Quang An
2 tháng 1 2017 lúc 23:07



n2+n+2016
=n2+n+1+2015
Ta xét ra 5 trường hợp n2 có chữ số tận cùng là: 1,4,5,6,9.
Bc cuối bạn có thể tự làm nhé.
Chúc may mắn!!!
 

Trà My
2 tháng 1 2017 lúc 23:25

+) Xét n=5k

=>\(n^2+n+2016=25k^2+5k+2016=5\left(5k^2+k+403\right)+1\) không chia hết cho 5

+) Xét n=5k+1

=>\(n^2+n+2016=\left(5k+1\right)^2+5k+1+2016=25k^2+10k+1+5k+1+2016\)

\(=25k^2+15k+2018=5\left(5k^2+3k+403\right)+3\) không chia hết cho 5

+) Xét n=5k+2

=>\(n^2+n+2016=\left(5k+2\right)^2+5k+2+2016=25k^2+20k+4+5k+2+2016\)

\(=25k^2+25k+2022=5\left(5k^2+5k+404\right)+2\) không chia hết cho 5

+) Xét n=5k+3

=>\(n^2+n+2016=\left(5k+3\right)^2+5k+3+2016=25k^2+30k+9+5k+3+2016\)

\(=25k^2+35k+2028=5\left(5k^2+7k+405\right)+3\) không chia hết cho 5

+) Xét n=5k+4

=>\(n^2+n+2016=\left(5k+4\right)^2+5k+4+2016=25k^2+40k+16+5k+4+2016\)

\(=25k^2+45k+2036=5\left(5k^2+9k+407\right)+1\) không chia hết cho 5

Từ 5 trường hợp trên => đpcm


Các câu hỏi tương tự
Cô nàng Song Ngư
Xem chi tiết
Kudo Sinichi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cô nàng Song Ngư
Xem chi tiết
bong
Xem chi tiết
SANRA
Xem chi tiết
TranNgocThienThu
Xem chi tiết
Nguyễn Phạm Quang Khải
Xem chi tiết
bui huyen
Xem chi tiết