Ta có : \(\sqrt{\dfrac{a^2}{b}}+\sqrt{\dfrac{b^2}{a}}\)
\(=\dfrac{\sqrt{a}^2}{\sqrt{b}}+\dfrac{\sqrt{b}^2}{\sqrt{a}}\)
\(=\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
Theo BĐT Cô Si dưới dạng engel ta có :
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\)
Dấu \("="\) xảy ra khi \(a=b\)
Chúc bạn học tốt
Đề thiếu a,b > 0
\(\sqrt{\dfrac{a^2}{b}}+\sqrt{\dfrac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Áp dụng bđt Svacxo, ta có:
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\)
=> ĐPCM