chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx/(1−yz)=y2−zxy/(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)với x\(\ne y,xyz\ne0,yz\ne1,xz\ne1\) thì xy+yz+zx=xyz(x+y+z)
Biết x , y , z khác 0 và x + y +z = 1/x + 1/y + 1/z .Chứng minh
y ( x2 - yz ) ( 1 -xz ) = x ( 1 - yz ) ( y2 - xz )
làm bài này giúp mk nha , mk hứa sẽ tích
Biết x , y , z khác 0 và x + y +z = 1/x + 1/y + 1/z .Chứng minh
y ( x2 - yz ) ( 1 -xz ) = x ( 1 - yz ) ( y2 - xz )
làm bài này giúp mk nha , mk hứa sẽ tích
cho xyz=2014
chứng minh rằng: 2014x/(xy+2014x+2014)+y/(yz+y+2014)+z/(xz+z+1)=1
làm ơn giúp mik nha mik cần gấp lắm
cho 3 số x,y,z nguyên dương thỏa mãn xy+yz+xz=0 chứng minh A=(x2+1)(y2+1)(z2+1) là bình phương của 1 số nguyên
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
Cho x2 + y2 + z2 = 10. Tính:
P = ( xy + yz + xz)2 + ( x - yz)2 + ( y - xz)2 + ( z - xy)2
Chứng minh đẳng thức
\(\left(x+y+z\right)-x^2-y^2-z^2=2\left(xy+yz+xz\right)\)