Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d khác 0 ; c khác +d và -d . chứng minh rằng hoặc a/b = c/d hoặc a/b = d/c
Chứng minh rằng nếu : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a = c hoặc a + b + c + d = 0
Chứng minh rằng nếu a + c = 2b và 2bd = c(b + d ) thì \(\frac{a}{b}=\frac{c}{d}\)với b,d khác 0.
Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) khác 1 (a,b,c,d khác 0) thì \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh rằng nếu \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a=c hoặc a+b+c+d=0(với c+d\(\ne0\))
các bạn giúp mình nhé
( với abc # 0 và các mẫu đều khác 0)
Biết \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d khác 0. Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)hoặc\(\frac{a}{b}=\frac{d}{c}\)
Cho tỉ lệ thức \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với a,b,c,d khác 0 và c khác-d
Chứng minh rằng : \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c khác 0;\(c\ne\pm d\).chứng minh rằng hoặc \(\frac{a}{b}=\frac{d}{c}\)hoặc