Chứng minh rằng: nếu a + b + c = 1 thì (a + bc)(b + ca)(c + ab) => 0?
Chứng minh rằng: nếu a + b + c = 1 thì (a + bc)(b + ca)(c + ab) => 0?
1,Với các số dương a,b,c. Chứng minh rằng: \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
2, Với các số a,b,c>0. Chứng minh rằng:\(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
Cho a+ b + c =0 (a,b,c khác 0). Chứng minh rằng a^2/bc+b^2/ca+c^2/ab-3=0
Cho 1>=a,b,c>=0.Chứng minh rằng a+b2+c3-ab-bc-ca<=1
Cho\(a+b+c=0\) chứng minh rằng
\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Cho a,b,c > 0 và a+b+c =1. Chứng minh ab/(c+ab) + bc/(a+bc) + ca/(b+ca) > hoặc = 3/4
Cho a,b,c thuộc [0,1] và ko đồng thời bằng 0.Chứng minh rằng
\(\dfrac{1}{1+b+ca}\)+\(\dfrac{1}{1+c+ab}\)+\(\dfrac{1}{1+a+bc}\)\(\le\)\(\dfrac{3}{a+b+c}\)