Cho tứ giác lồi ABCD có các đường chéo AC và BD bằng nhau. Gọi M , N lần lượt là trung điểm của các cạnh AD và BC. Chứng minh rằng đường thẳng MN tạo với hai đường thẳng AC và BD các góc bằng nhau.
GIÚP MÌNH VỚI MAI PHẢI NỘP RỒI, CẢM ƠN MNG
ho tam giác abc vuông tại A có AB <AC .trên cạnh AC lấy D sao cho AD=AB. kẻ CE vuông góc với BD (E thuộc BD) a) chứng minh 2 góc EAC và EBC bằng nha b)kéo dài AB và CE cắt nhau tại F. CHứng minh diện tích tam giác FAE = diện tích tam giác ABCE
Cho tam giác ABC nhọn, các đường cao BE, CF cắt nhau tại H( E thuộc AC, F thuộc AB). Gọi O là giao điểm 3 đường trung trực của tam giác ABC. Chứng minh rằng khoảng cách từ O đến cạnh BC bằng một nửa độ dài AH
Khẳng định nào sau đây là đúng ?
A.Trong hình bình hành các góc đối bù nhau
B. Trong hình bình hành hai góc kề 1 cạnh phụ nhau
C.Trong hình chữ nhật, 2 đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường
D. Trong hình bình hành hai đường chéo = nhau
Trong tam giác ABC, các đường trung tuyến AA' và BB' cắt nhau ở G. Tính diện tích tam giác ABC biết rằng diện tích tam giác ABG bằng S ?
tam giác ABC vuông tại A , M là điểm trên BC . MD là đường thẳng kẻ từ M đền AB .ME vuông góc với AC . Gọi O là trung điểm của AM Chứng minh D và E đối xứng qua O . Tứ giác BDEC có 2 góc đối bù nhau nếu AM vuông góc với DC . Xác định vị trí điểm M trên BC để 2AM+3DE đạt giá trị nhỏ nhất Gọi AH là đường cao , AK là đường trung tuyến . Kẻ Hi vuông góc với AB , AC vuông góc với HF . cm Ak vuông góc với IF Cm góc DHF bằng 90 độ
1/ Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
2/Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF
3/Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ