\(n^5-n=n\cdot\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)
TH1: n = 5k => đpcm
TH2: n = 5k+1 => n-1 chia hết cho 5 => đpcm
TH3: n = 5k + 2 => n2+1=(5k+2)2+1=25k2+20k+5=5(5k2+4k+1) chia hết cho 5 => đpcm
TH4: n = 5k + 3 => n2+1=(5k+3)2+1=25k2+30k+10=5(5k2+6k+2) chia hết cho 5 => đpcm
TH5: n = 5k + 4 => n+1 chia hết cho 5 => đpcm
Vậy với n thuộc Z thì n5-n luôn chia hết cho 5