\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1=>\left(x-1\right)^2=-1\left(vônghiemej\right)\)
\(x^2-2x+2\)
\(=x^2-x-x+1+1\)
\(=\left(x^2-x\right)-\left(x-1\right)+1\)
\(=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)\left(x-1\right)+1\)
\(=\left(x-1\right)^2+1\)
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)
Vậy đa thức x2 - 2x + 2 vô nghiệm