Số số hạng của B là (1991-1):2+1=996
Để chứng minh B chia hết cho 13, ta nhóm 3 số 1 bộ
B=(3+33+35)+(37+39+311)+...+(31987+31989+31991)
B=3(1+32+34)+37(1+32+34)+...+31987(1+32+34)
B=3.91+37.91+...+31987.91
B=91.(3+37+...+31987)
Vì 91 chia hết cho 13 nên B chia hết cho 13
Để chứng tỏ B chia hết cho 41, ta nhóm 4 số 1 bộ
B=(3+33+35+37)+(39+311+313+315)+...+(31985+31987+31989+31991)
B=3(1+32+34+36)+39(1+32+34+36)+...+31985(1+32+34+36)
B=3.820+39.820+31985.820
B=820.(3+39+31985)
Vì 820 chia hết cho 41 nên B chia hết cho 41
\(B=3+3^3+3^5+...+3^{1991}\)
\(B=\left(3+3^3+3^5\right)+...+\left(3^{1997}+3^{1998}+3^{1999}\right)\)
\(B=273+....+\left(3^{1997}+3^{1998}+3^{1999}\right)\)đều chia hết cho 13
\(=>B\)chia hết cho \(13\)\(\left(đpcm\right)\)
\(B=3+3^3+...+3^{1991}\)
\(B=\left(3+3^3+3^5+3^7\right)+....+\left(3^{1996}+3^{1997}+3^{1998}+3^{1999}\right)\)
\(B=2460+...+\left(3^{1996}+3^{1997}+3^{1998}+3^{1999}\right)\)chia hết cho 41
\(=>B\)chia hết cho \(41\left(đpcm\right)\)
Ta có:(3+33+35)+....+(31987+31989+31991)
=273+...+31987.(1+9+81)
=273+...+31987.91
=13.21+...+31987.13.7 chia hết 13