CMR:a3+b3+c3\(\ge\)3abc với a,b,c>0
+)Áp dụng bất đẳng thức Cô-Si của ba số nguyên dương ta có:
a3+b3+c3\(\ge\)\(\sqrt[3^3]{a^3b^3c^3}\)
Mà \(\sqrt[3^3]{a^3b^3c^3}\)=3abc
=>a3+b3+c3\(\ge\)3abc
Bất đẳng thức xảy ra khi a=b=c(ĐPCM)
Chúc bn học tốt
C1 : Áp dụng BĐT Cô si cho ba số dương \(a^3,b^3,c^3\) ta được :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
C2 : ta xét hiệu : \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) (1)
Ta thấy \(\left(1\right)\ge0\) \(\Rightarrow a^3+b^3+c^3\ge3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(a^3+b^3+c^3\ge3abc\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)+\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)(luôn đúng với a,b,c >0)
Vậy bất đẳng thức được chứng minh, nếu bạn không hiểu chỗ nào thì nhắn tin nhắn riêng hỏi mk nhé, bài mk cam kết 100% đúng)
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
Như thế này nhé Con thỏ trắng có bộ lông đen thui
Con thỏ trắng có bộ lông đen thui Bạn sai ở dấu + thành dấu nhân nhé.
\(\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) Chứ không phải \(\frac{1}{2}\left(a+b+c\right)+\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
Ta xét hiệu: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left[\left(a+b+c\right)^2-3ac-3bc-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\frac{1}{2}.\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)
\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
\(\Rightarrow a^3+b^3+c^3\ge3abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)