Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh

Chứng minh rằng :

\(a^3+b^3+c^3\ge3abc\)với a,b,c > 0

╰Nguyễn Trí Nghĩa (team...
6 tháng 2 2020 lúc 16:04

CMR:a3+b3+c3\(\ge\)3abc với a,b,c>0

+)Áp dụng bất đẳng thức Cô-Si của ba số nguyên dương ta có:

a3+b3+c3\(\ge\)\(\sqrt[3^3]{a^3b^3c^3}\)

Mà \(\sqrt[3^3]{a^3b^3c^3}\)=3abc

=>a3+b3+c3\(\ge\)3abc

Bất đẳng thức xảy ra khi a=b=c(ĐPCM)

Chúc bn học tốt

Khách vãng lai đã xóa
Trí Tiên亗
6 tháng 2 2020 lúc 16:04

C1 : Áp dụng BĐT Cô si cho ba số dương \(a^3,b^3,c^3\) ta được :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\) 

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2 : ta xét hiệu : \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) (1)

Ta thấy \(\left(1\right)\ge0\) \(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa

\(a^3+b^3+c^3\ge3abc\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)+\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)(luôn đúng với a,b,c >0)

Vậy bất đẳng thức được chứng minh, nếu bạn không hiểu chỗ nào thì nhắn tin nhắn riêng hỏi mk nhé, bài mk cam kết 100% đúng)

Khách vãng lai đã xóa
Phan Gia Huy
6 tháng 2 2020 lúc 16:34

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

Như thế này nhé  Con thỏ trắng có bộ lông đen thui

Khách vãng lai đã xóa
Trí Tiên亗
6 tháng 2 2020 lúc 16:42

Con thỏ trắng có bộ lông đen thui Bạn sai ở dấu + thành dấu nhân nhé.

\(\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) Chứ không phải \(\frac{1}{2}\left(a+b+c\right)+\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Khách vãng lai đã xóa
Chu Công Đức
6 tháng 2 2020 lúc 16:43

Ta xét hiệu: \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)^3-3\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left[\left(a+b+c\right)^2-3ac-3bc-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}.\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

\(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Linh Tu
Xem chi tiết
Trung Hoàng
Xem chi tiết
Duong Thi Nhuong TH Hoa...
Xem chi tiết
tth_new
Xem chi tiết
Pé Ken
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Hockaido
Xem chi tiết
Lê Trung Kiên
Xem chi tiết
Bùi Phương Thảo
Xem chi tiết