Ta có a2+a+1=a.a+a+1=a.(a+1)+1
Vì a và a+1 là 2 số liên tiếp => a.(a+1) là số chẵn => a.(a+1)+1 là số lẻ=> a.(a+1)+1 ko chia hết cho 2008=> a2 +a+1 ko chia hết cho 2008
Cái này mk ko chắc lắm
Ta có a2+a+1=a.a+a+1=a.(a+1)+1
Vì a và a+1 là 2 số liên tiếp => a.(a+1) là số chẵn => a.(a+1)+1 là số lẻ=> a.(a+1)+1 ko chia hết cho 2008=> a2 +a+1 ko chia hết cho 2008
Cái này mk ko chắc lắm
chứng minh rằng :
a) A= 10^2008 +125 chia hết cho 45
b) B= 5^2008+5^2007+5^2006 chia hết cho 31
c) H= 8^6+ 2^20 chia hết cho 17
d) H= 313^5. 299- 313^6 . 36 chia hết cho 7
chứng minh rằng a,
A = n^2 +n +1 ko chia hết cho 9
b, B=n^2 + 3n - 5 ko chia hết cho 21
1. Cho 3.a +2.b chia hết cho 17
chứng minh rằng : 10.a +b chia hết cho 17
2.Cho a = 5.b chia hết cho 17
chứng minh rằng: 10.a +b chia hết cho 17
Tính tổng: B = 1 + 4 + 42 + 43 + ... + 4100.
Chứng minh rằng: 1414 - 1 chia hết cho 3.
Chúng minh rằng: 20092009 - 1 chia hết cho 2008.
Chứng minh rằng 22008 + 22009 + 22010 chia hết cho 7.
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
a)Cho số nguyên dương > 1 theo thứ tự tăng dần a1, a2, a3, ..., an, trong đó các số này ko chia hết cho 2 và 3. Chứng minh rằng an > 3n
b)Đa thức f(x) = ax2 + bx + c có a, b, c là các số nguyên, và \(a\ne0\). Biết với mọi giá trị nguyên của x thì f(x) chia hết cho 7. Chứng minh rằng a, b, c đều chia hết cho7
Chứng minh rằng A=11.12.13.14+21.22.23.24.25 chia hết cho 5,9,15,77
Chứng minh rằng B=(2012^9+2012^8+2012^7-2012^6) chia hết cho 2013
Chứng minh rằng A= 7+7^2+7^3+…+7^2000 chia hết cho 8
Tìm n thuộc tập hợp N để
a, n+6 chia hết cho n b,4n+5chia hết cho n. c, n+5 chia hết cho n+1. đ, 3n + 4 chia hết cho n-1