\(M=a^4+6a^3+11a^2+6a+24a\) 24.a chia hết cho 24 ta cần c/m
\(a^4+6a^3+11a^2+6a\) chia hết cho 24
\(a^4+6a^3+11a^2+6a=a\left(a^3+6a^2+11a+6\right)=\)
\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)
Ta nhận thấy đây là tích của 4 số TN liên tiếp
Trong 4 số TN liên tiếp thì có 2 số chẵn liên tiếp 1 số chia hết cho 2 và 1 số chia hết cho 4 nên tích của chúng chia hết cho 8
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 1 số chia hết cho 3
=> tích của 4 số TN liên tiếp chia hết cho 3x8=24
Nên \(a^4+6a^3+11a^2+6a⋮24\Rightarrow M⋮24\)