x4+y4+(x+y)4=x4+y4+x4+4x3y+6x2y2+4xy3+y4
=2x4+2y4+4x2y2+4x3y+4xy3+2x2y2
=2(x4+y4+2x2y2)+4xy(x2+y2)+2x2y2
=2(x2+y2)2+4xy(x2+y2)+2x2y2
=2[(x2+y2)+2xy(x2+y2)+x2y2]
=2(x2+y2+xy)2 (Đpcm)
x4+y4+(x+y)4=x4+y4+x4+4x3y+6x2y2+4xy3+y4
=2x4+2y4+4x2y2+4x3y+4xy3+2x2y2
=2(x4+y4+2x2y2)+4xy(x2+y2)+2x2y2
=2(x2+y2)2+4xy(x2+y2)+2x2y2
=2[(x2+y2)+2xy(x2+y2)+x2y2]
=2(x2+y2+xy)2 (Đpcm)
Giải thích hộ mk chỗ (*)này:
\(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-y^2\right)[\left(x^2\right)^2+xy+\left(y^2\right)^2]\)(Đây là hằng đẳng thức số 7)
=\(\left(x^2-y^2\right)\left(x^4+xy+y^4\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^4+y^4+xy\right)\)(Bước này khai triển hằng đẳng thức số 3 trong(x^2-y^2)
\(=\left(x^2+y^2\right)^2-2x^2y^2+x^2y^2\)(*)(Chỗ này giải thích hộ mk với)
\(=\left(x^2+y^2\right)^2-\left(xy\right)^2=\left(x^2+xy+y^2\right)\left(x^2+y^2-xy\right)\)(Đây là hằng đẳng thức số 3)
Vậy giúp mk nha, cảm ơn trước!
Chứng minh các hằng đẳng thức sau:
a) \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
b) \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
Mình đang cần lời giải ( chi tiết). Cảm ơn nhiều
Chứng minh hằng đẳng thức sau:
\(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
Mình đang cần lời giải (chi tiết) và đang gấp, xin giúp mình. Cảm ơn nhiều
Chứng minh các đẳng thức:
a)\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)
b)\(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)
Chứng minh đẳng thức:
a) \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Bài 3. Chứng minh các đẳng thức sau:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
c. \(\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)=a^4-b^4\)
đ. \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-b^3\)
chứng minh đẳng thức:
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=-2y^3\)
Phân tích các đa thức sau thành nhân tử(sử dụng các hằng đẳng thức)
a)\(16x^2-\left(x^2+4\right)^2\)
b)\(\left(x+y\right)^3+\left(x-y\right)^3\)