Ta có: \(VT=\left(a+b\right)^3+\left(a-b\right)^3\)
\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3\)
\(=2a^3+6ab^2\)
\(=2a\left(a^2+3b^2\right)=VP\)
\(\Rightarrowđpcm\)
Ta có: \(VT=\left(a+b\right)^3+\left(a-b\right)^3\)
\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3\)
\(=2a^3+6ab^2\)
\(=2a\left(a^2+3b^2\right)=VP\)
\(\Rightarrowđpcm\)
Bài 8: a)Chứng minh rằng ( a + b + c)3- a3 – b3 – c3 = 3( a +b)(b +c)( c+ a)
b)a3 +b3 +c3 – 3abc = ( a + b + c)( a2 +b2 + c2)
CMR
a. a^2*(a+1) +2a *(a+1) chia hết cho 6 với a thuộc Z
b. a*(2a-3) -2a*(a-1) chia hết cho 5 với a thuộc Z
c. chứng minh rằng với mọi số tự nhiên lẻ n :
1.n^2+4n+8 chia hết cho 8
2. n^3 +3n^2 -n-3 chia hết cho 48
ai trả lời nhanh mình tick nha
Chứng minh rằng :
a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=2a^3\)
b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
c) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
cho 3 số dương thỏa mãn a+b+c=3. Chứng minh rằng\(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
( mình chọn chủ đề linh tinh nhá :V vì ko có )
Chứng minh rằng:
a) (x+y)3 = x(x-3y)2 + y(y-3x)2
b) (a+b)3 + (a-b)3 = 2a(a2+3b2)
c) (a+b)3 - (a-b)3 = 2b(b2 + 3a2)
d) a3+b3 = (a+b)3 - 3ab(a+b)
e) a3-b3 = (a-b)3+ 3ab(a-b)
giúp mik với mik cần gấp lắmmmm
Bài 2 Chứng minh hằng đẳng thức
a. (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc
b. (a + b) 2 + (a − b) 2 = 2a 2 + 2b 2 .
c. (a + b) 2 − (a − b) 2 = 4ab.
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Cho a, b, c >0 Chứng minh:
(4a2 + (b-c)2 )/( 2a2+b2+c2 )+(4b2+(c-a)2)/(2b2+c2+a2)+ ((4c2+ (a-b)2)/(2c2+a2+b2) >= 3