Có (a-b)^2 >=0
<=> a^2 + b^2 >= 2ab (1) ( với mọi a,b)
Tương tự có b^2 + c^2 >= 2bc(2)
c^2 + a^2 >= 2ca(3)
Cộng vế theo vế của (1),(2) và (3) ta có : 2.(a^2+b^2+c^2)>= 2.(ab+bc+ca)
<=> 2.(a^2+b^2+c^2) +a^2+b^2+c^2 >= a^2+b^2+c^2+2.(ab+bc+ca)
<=>3.(a^2+b^2+c^2)>= (a+b+c)^2
<=> a^2+b^2+c^2 >= (a+b+c)^2/3
Áp dụng bđt trên thì x^2+y^2+z^2 >= (x+y+z)^2/3 = 1/3 => ĐPCM
Dấu "=" xảy ra <=> x=y=z=1/3