Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)
Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)
Cho số thực x thỏa mãn \(\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
Tính giá trị biểu thức \(A=\sqrt{4x^2-24x+256}-2\sqrt{x^2-6x+36}\)
Cho x thỏa mãn
\(\sqrt{x^2-6x+36}\)+\(\sqrt{x^2-6x+64}\)=7
TÌm GTBT : A= \(\sqrt{4x^2-24x+256}\)-2.\(\sqrt{x^2-6x+36}\)
1, cho a = \(4+\sqrt{5}\),b=\(4-\sqrt{5}\)
Tính A=\(\left(a^{2018}-8a^{2017}+11a^{2016}\right)+\left(b^{2018}-8b^{2017}+11b^{2016}\right)\)
2, cho \(\sqrt{x^2-6x+36}+\sqrt{x^2-6x+48}=18\)
Tính A=\(\sqrt{4x^2-24x+256}-2\sqrt{x^2-6x+36}\)
Tìm x:
\(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+18}+\sqrt{x^2-6x+12}=4+\sqrt{3}\)
Giải Phương Trình
a)\(\sqrt{x^2-6x+1}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
b)\(\frac{x^2-6x+15}{x^2-6x+11}=\sqrt{x^2-6x+18}\)
cho \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)
hãy tính \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
Cho \(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
Tính M = \(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
Giải phương trình: \(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+18}=6x-5-x^2\)
Tìm x
\(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+8}+\sqrt{x^2-6x+12}=4+\sqrt{3}\)